On the Cohen–Macaulay Property of Modular Invariant Rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cohen - Macaulay Property of Invariant Rings

If V is a faithful module for a nite group G over a eld of characteristic p > 0, then the ring of invariants need not be Cohen-Macaulay if p divides the order of G. In this article the cohomology of G is used to study the question of Cohen-Macaulayness of the invariant ring. Let R = S(V) be the polynomial ring on which G acts. Then the main result can be stated as follow: If H r (G; R) 6 = 0 fo...

متن کامل

Sets of Non - Modular Invariant Rings

It is a classical problem to compute a minimal set of invariant polynomials generating the invariant ring of a finite group as an algebra. We present here an algorithm for the computation of minimal generating sets in the non-modular case. Apart from very few explicit computations of Gröbner bases, the algorithm only involves very basic operations, and is thus rather fast. As a test bed for com...

متن کامل

On Generators of Modular Invariant Rings of Finite Groups

Let G be a finite group, let V be an FG-module of finite dimension d, and denote by β(V ,G) the minimal number m such that the invariant ring S(V ) is generated by finitely many elements of degree at most m. A classical result of E. Noether says that β(V ,G) 6 |G| provided that charF is coprime to |G|!. If charF divides |G|, then no bounds for β(V ,G) are known except for very special choices o...

متن کامل

On Generators of Modular Invariant Rings of Nite Groups

Let G be a nite group, let V be an F G-module of nite dimension d, and denote by (V; G) the minimal number m such that the invariant ring S(V) G is generated by nitely many elements of degree at most m. A classical result of E. Noether says that (V; G) jGj provided that char F is coprime to jGj!. If char F divides jGj then no bounds for (V; G) are known except for very special choices of G. In ...

متن کامل

On the Intersection of Invariant Rings

Based on Weitzenböck’s theorem and Nagata’s counterexample for Hilbert’s fourteenth problem we construct two finitely generated invariant rings R,S ⊂ K[x1, x2, . . . , xn] s.t. the intersection R ∩ S is not finitely generated as a K-algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1999

ISSN: 0021-8693

DOI: 10.1006/jabr.1998.7716